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We present an explicit expression for the moments Mne" where e,(x) = x'
(rE No), of the Meyer-Konig and Zeller operators in terms of a Laplace integral.
Furthermore we give the complete asymptotic expansion for n -+ 0Ci. rr, 1995

Academic Press. Inc.

I. INTRODUCTION

The operators of Meyer-Konig and Zeller [7] in the slight modification
of Cheney and Sharma [3]

,,+ I ~ (k +n) k ( k )
(M"f)(x)=(l-x) k':::O k x j k+n

(M"f)(I)=j(l)

(x E [0, l))
(1)

(also called Bernstein power series) were the object of several investigations
in approximation theory. Of particular interest are the moments M"e n

where the functions er (r = 0, 1, 2, ... ) are defined bye,: x _ x'.
In the case r = 0, I the moments are easily determined to be

and (2)

Many authors have only dealt with estimates of (M"e ,)(x) - x' in the
important case r = 2 (see, e.g., the literature cited in [I J). In 1984
Alkemade [l, Theorem 2] was the first who succeeded in deriving an
explicit expression for the second moment in terms of a hypergeometric
series
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(x E [0, 1)). (3)
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Furthermore, he proved the asymptotic expansion [I, Formula 4.6]

(n ~ aJ) (4)

which also occurs in [8]. Results for the case r = 3 can be found in [2].
The purpose of this paper is to extend the known results about the

second moment in [I] to higher order moments. More precisely, we give
a complete solution of the problem to find an explicit expression and the
asymptotic expansion for all moments Miler (r=O, 1,2, ... ) of the
Meyer-Konig and Zeller operators. Alkemade's formulae are based on a
certain differential equation. His method does not seem to work for the
general case r E N. Therefore, we use another approach to the matter.

For rEN and nEN we present an expression for (Mller)(x) in terms of
a Laplace integral. FinaIly, we derive the complete asymptotic expansion of
(Mlle,)(x) _xr as n ~ 00 in the form

(Mner)(x)~xr+ I clr](x)n- k

k~ I

(n~oo).

(5)

The coefficients clr](x) (k = 1,2, ... ; r EN) are calculated explicitly in terms
of Stirling numbers of the first and second kind. Our results make com
pletely transparent earlier partial results which mostly were obtained by
cumbersome elementary calculations (see [8]).

2. AN INTEGRAL REPRESENTATION FOR Mile,

In view of (2) we can restrict our investigations to the case r?: 2. For
convenience, in the following let r?: I. Our starting point is the identity

( k)' r (r) ( 11 V fy,-- = I + I . .- , . tj-le-Ik+n)( dt
k+n j~l } (j-I). 0

which is easily seen to be valid for all k = 0, I, 2, ... and 11 EN. Then we get
for every fixed x E (0, 1),

(1 - x)" + lYe d" (k)'
= I _xk + n --

Il! k=odx
n k+n
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(I-X),,+1 r (r)(-n)i d"
=1+ ,,-

n! i:-I j (j-l)!dx"

The interchanges of summation and differentiation are justified by the
absolute and uniform convergence in every closed subinterval of (0, 1). By
the Leibniz rule we have

and interchanging differentiation and integration yields the following

PROPOSITION. For r E Nand n E N the formula

r (r) (-n)i
(Ml1 e r )(x)=l+(l-x)"+1 I . ('-1 ,I(j-l,n,x)

i~ 1 } } ).

with

(6)

(jENo,nEN,XE[O, I)) (7)

is valid for each x E [0, 1).

Proof We have to consider only the case x = 0 which follows from

(j, nE N).

Remark 1. Replacing t by -log t, the integral I(j, n, x) introduced in
(7) becomes

1
I(j, n, x) = fa (-log t)i t,,-I(1 - Xt)-,,-I dt (8 )
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which will be of use presently. It may be worth noting that the proposition
yields the very concise representation

1 (I -x )n+ I
(Mne,)(x)=I-j tn -- d,L,(-logn

o I -xt

where L, denotes the Laguerre polynomial

Lrix) = ±(-I)J (r.) '~;.
J~O J J.

Remark 2. In the case r = I the proposition gives the 'well-known equa
tion Mne l = e J • This may be seen as follows. Using a linear transformation
formula for the hypergeometric function 2FI(a, b; c; x) (see, e.g., [5, p. 89,
formula (20)]) we get by (8)

1(0, n, x) = n -I 2FI(n + I, n; n + I; x) = n -1(1 - x) -n 2F.(0, I; n + I; x)

=n-I(l-x)-n

so that by (6)

for each XE [0, I)

which, of course, is also valid for x = I.

Now we proceed to derive the desired expression for the moments
(Mne,Hx) by means of a Laplace integral. Replacing the variable t by
log [x + (I - x) el

] in (7) gives for every n EN,

l(j, n, x) = (l - x) - n fa'" logj [x + (l - x) e l
] e - nl dt.

Therefore, the proposition implies as our first main result a closed
expression for (Mne,)(x) in terms of a Laplace integral.

THEOREM I. For r E Nand n E N the formula

is valid for every x E [0, I], where

(9)

G)x, s) = fX' Fj(x, 1) e-'I dt
o

(s > 0, X E [0, I)) (10)
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is the Laplace transform of
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(11 )

(as a function of t).

Remark 3. It could be of interest that Theorem I offers the possibility
to define a quite natural extension of the moments (Mner)(x) to complex
numbers n with Re( n) > 0.

3. THE SPECIAL CASE r = 2

In the special case r = 2, Theorem I states

Go(x, n) = n -) is obvious. Integration by parts and substitution in (10)
as well as some known properties of hypergeometric functions yield

Gj(x, n) = n -2(1 - xr 2F\(n, n; n + I; x)

= n- 2
( I - x) 2F) (I, I; n + I; x)

=n- 2(1-x)[1 +x(n+ 1)-1 2F,(1, 2;n+2;x)].

Therefore we get

(XE[O,!))

which is the above-mentioned result (3).

4. THE ASYMPTOTIC EXPANSION FOR Mner

In order to derive an asymptotic expansion for Mner it is sufficient, by
(9), to study the behaviour of the Laplace integrals Gj(x, s) for s -+ + 00.

Using Watson's lemma (see, e.g., [5, p. I06f]) it is possible to give the
complete asymptotic expansion of Gj(x, s) as s -+ + 00.

LEMMA 1. Let F( t) be defined and continuous on [0, 00). For some
constants a, t5 > °let

(a) F{t) be analytic for ItI~a + t5 with F{t) = I:t~o aktk and

(b) IF(t)1 < Kebt for all real t?; a.
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Then we have

rF(t)e-S1dt- I akT(k+l)s-k-1
o k~O

The latter formula means that, provided s > b,

(s~ +00).

.x~ p-lf F(t)e-S1dt= L: akT(k+l)s-k-l+o(s-p)
o k=O

(s~ +00)

for all pEN. We remark that this is valid even if s is complex with
Re(s) > bas Re(s) ~ + 00.

Obviously, for every fixed x E [0, I) and all j E No, the functions Fj(x, t)
in (11) satisfy the assumptions of Lemma 1, where b may be chosen to be
any arbitrary small positive constant. Therefore we have

ex..
_" [j] kF)x, t) - L. a k (x) t
k~O

in a neighbourhood of the origin t = 0, and Lemma 1 implies

(12)

'x·

Gj(x, s) - L: aVJ(x) T(k + I) S-k-l

k~O

(s~ +00). (13 )

The coefficients a~j](x) occurring in (12), resp. (13), will be determined in
the following.

LEMMA 2. For k,j = 0, 1,2, ... there holds

./ k

a~j)(x) =~.! LS{a~(1-x)i
'=J

(14)

where the sum is to be read as a if k <j.

The quantities S5 and a5 denote the Stirling numbers of the first, resp.
second, kind defined by

j

xlj) = I S5Xi

;=0

and
j

x j = L a;x1il

i~O

where Xl j) = x(x-I) ... (x - j + 1) is the falling factorial.

Proof of Lemma 2. By the well-known power series expansions
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and
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(see, e.g., [4, p. 202]), we get using (11) that

Fj(x, t) = Iogj[ 1+ (1- x)(e' -1)]

'eI",', . if' . tk
- 'f " SJ( 1_ )'" ,_-j.t... I x L,(Jkk f

i=) k=;·

'h tk k .. .
=j! L , L: S{(J~(1-X)'

k~jk. ;=j

for all t which are sufficiently small. This proves Lemma 2.

Combining (9), (10) with (13) and Lemma 2 we obtain our second main
result.

THEOREM 2. The complete asymptotic expansion for the moments Mner
(r EN) of the Meyer-Konig and Zeller operators is

(fj

(Mner)(x)~xr+ L cfJ(x)n-k

k~ I

(n -+ 00 ) (15)

for every x E [0, 1], where the coefficients are given by

r (r) .c£r1(x)= L: . (-I)JH(j-I,k+j-I,x)
j~ I j

and H(j, m, x) is defined as

(16)

m

H(j, m, x) = L S{(J~J 1 - xr+ I

i=j

(O~j~m). (17)

Remark 4. In order that Theorem 2 also contains the trivial case r = 1
for which cVJ=O (k=I,2, ... ), the sum in (16) starts at j=l. In the
general case r~ 2 the sum in (16) actually runs from j = 2 to j = r because
of H(0, k, x) = 0 (k = 1, 2, ... ).

Proof of Theorem 2. Taking into account that by Lemma 2 for all
xEIR

and (k=O, ...,j-l;jEN)
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we obtain with regard to (13), (14), and (17)

Go(x,S)=S-1

for j=O and

,Yj

G)x,s)~ I ay})x)(k+j)!s-k- j
I

k~O

if, k+j
=j! L s-k-j-I L S{a~+j(1-x)j

k~O j~j

·,x,
=-IJ · L S-k-j-1H(j, k + j, x)

-x k=O

for jE N. Inserting this in Eq. (9) we get

(Mne,)(x) ~ 1- r( 1- x) + k~O 11 -k jtz C)
x ( - 1V H(j - 1, k + j - I, x)

(s->+OO).

(n-> CX)).

Taking advantage of the relationship H(j - I, j - 1, x) = (1 - x V for all
jE N, we see that

x , (r)
(Mne,)(x) ~ x' + k~1 n-

k
j~2 j

X ( -1)j H(j - 1, k + j - I, x) (n-> w)

and, in view of Remark 4, the Proof of Theorem 2 is complete.

For practical use, however, Theorem 2 is not very suitable because the
Stirling numbers occurring in (17) are not easy to handle. Therefore we
close this note with the following

COROLLARY. For every r E N and x E (0, 1] we have the asymptotic
relation

X'-2(1-x)2[(r) (r)+ n2 2 x(2x-l)- 3

x (1 - x)( 5x - I) + 3 (~) (1 - X)2J
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- 2 (;) x(1- x)(16x2
- llx + 1) + (:) (1 - X)2

X (61 x 2
- 26x + I ) - 10 G) (1 - x) 3 (5x - I )

+ 15 G) (I - X)4J+ O(n -4)

Proof By (17) we get

H(j - I,), x) = x( 1- x)) (;),

H(j - I,)+ I, x) = x(I;x)) (j + 1))(j - I) [ (3) + 2) x - 4]

(18)

=x(l-x)Jl(;) (2x-l) + (;) (5x-l) + 3 (~) x J
(19)

and

H(j-I,)+2,x)

= X(14~ x)) (j + 2)(j + 1))(j - I) [ (j + I )(j + 2) x 2
- 4(j + 1) x + 2]

=x(1-x)J l(;) (6x 2 -6x+ 1) + 2 G) (l6x 2 -11x+ 1)

+(~) (61x
2
-26x + 1) + 10 (;) (5x

2
-x) + 15 G) X21· (20)

The right-hand sides of (18), (19), and (20) are then substituted in formula
(16), taking therein k = 1, 2, 3. In view of the identity

JtIC) (-1V (~) (I - x)) = (- 1)k (~ ) x
r

- k ( 1 - x) k

the corollary now easily follows from Theorem 2.

(k ~ 1),
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Finally, let us consider the special case r = 2. In this case the corollary
gives

, , {I 2x - 1 6x
2

- 6x +1}
(Mn e2 )(x)=x"+x(1-x)- -+--,-+ 1

n n- 1r

+ O( n - 4) (n --+ (0)

which contains formula (4).

Remark 5. One of the referees pointed out that the last given
asymptotic relation for (Mn e2 )(x) may also be derived from (3) by
expanding 2F1(1, 2; n + 2; x).
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