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The Moments for the Meyer-Kénig and Zeller Operators
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We present an explicit expression for the moments M,e,, where e,(x)=x"
{re Ny), of the Meyer-Konig and Zeller operators in terms of a Laplace integral.
Furthermore we give the complete asymptotic expansion for n— oc.  © 1995

Academic Press, Inc.

1. INTRODUCTION

The operators of Meyer—Konig and Zeller [ 7] in the slight modification
of Cheney and Sharma [3]

_ w1l o (k+n\ k
(M, fMx)=(1-x) k‘é(}( k >xf<_k+n> (xe[0,1)) 0

(M, XD =f(1)

(also called Bernstein power series) were the object of several investigations
in approximation theory. Of particular interest are the moments M,e,,
where the functions e, (r=0, 1, 2, ...) are defined by e,: x — x".

In the case r=0, ] the moments are easily determined to be

M, e,=¢, and M, e, =e,. (2)

Many authors have only dealt with estimates of (M,e,)(x)—x" in the
important case r=2 (see, eg., the literature cited in [1]). In 1984
Alkemade [1, Theorem 2] was the first who succeeded in deriving an
explicit expression for the second moment in terms of a hypergeometric
series

x)?

(M,e,)(x)= x> +%;—

1 2Fi(1, 2, m+2; x) (xe[0,1)). (3)
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Furthermore, he proved the asymptotic expansion [ 1, Formula 4.6]
x(1 —x)2+x(1 —x)?(2x—1)
n n?

+0(n"?%) (n—o0) (4)

(M,e;)(x) —x° =

which also occurs in [8]. Results for the case r =3 can be found in [2].

The purpose of this paper is to extend the known results about the
second moment in [ 1] to higher order moments. More precisely, we give
a complete solution of the problem to find an explicit expression and the
asymptotic expansion for all moments M,e, (r=0,1,2,..) of the
Meyer-Kénig and Zeller operators. Alkemade’s formulae are based on a
certain differential equation. His method does not seem to work for the
general case re N. Therefore, we use another approach to the matter.

For re N and ne N we present an expression for (M,e,)(x) in terms of
a Laplace integral. Finally, we derive the complete asymptotic expansion of
(M e, )(x)—x" as n— o0 in the form

(M, e)(x)~x"+ i et xyn* (n— o).
k=1

The coefficients C,E'](x) {(k=1,2,..;reN) are calculated explicitly in terms
of Stirling numbers of the first and second kind. Our results make com-
pletely transparent earlier partial results which mostly were obtained by
cumbersome elementary calculations (see [8]).

2. AN INTEGRAL REPRESENTATION FOR M, e,

In view of (2) we can restrict our investigations to the case r = 2. For
convenience, in the following let r > 1. Our starting point is the identity

k r_ . r (—"}j i —(k+ny1
<k+n> S @u—l)!jo o “ )

j=1

which is easily seen to be valid for all k=0, 1, 2, ... and ne N. Then we get
for every fixed xe (0, 1),

M= - ¥ () ()

o k+4n

A+l o n r
_Uzxrrt s d x"*"( k >
n! K dx" k+n
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—(I_X)n+l i X" . r r (_n)/
=TT d,r"[l—.x+" Z(j)(j~l)!

J=1

o *x
XJ‘ tj*l Z eik+n)lxkdt:'
0

k=0
1—. n+l1 r Y a
P Lkl Y,) Y <r> (. n),
n! N/ U —=Ddx
w X"
r_/wl —nt
xfo e wl—xe*’dt

The interchanges of summation and differentiation are justified by the
absolute and uniform convergence in every closed subinterval of (0, 1). By
the Leibniz rule we have

dn '\_/1 n n ) e—i!

——— e =p! T
=n X —

dx" 1 —xe ' ; i)" (1l—xe 'y}

n! xe ' )" n!
=t s
1 —xe 1 — xe (1 —xe )"
and interchanging differentiation and integration yields the following

PROPOSITION. For re N and neN the formula
/N (—n)
(Mye)(x) =1+ (1 —x)") <A>—.-——1< —Lax)  (6)
) ,Z;:] J (]—l)' /
with
te "

Himx=["¢ i

T:X?:T—d[ (]ENQ,HEN,.’CE[O,I)) (7)

is valid for each x€[0, 1).
Proof. We have to consider only the case x =0 which follows from
Ij—1,n0)=n"'I(j) (j,neN).

Remark 1. Replacing ¢ by —log ¢, the integral I(j, n, x) introduced in
(7) becomes

I(j,n,x)=f01(—logr)ft""(l—xt)‘""dt (8)
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which will be of use presently. It may be worth noting that the proposition
yields the very concise representation

I —x
1 —xt

n+1l
(M,e)(x)=1 —J.(: f"( > d.L(—logt")

where L, denotes the Laguerre polynomial
r P\ x/
L(x)= (—1)’< > -
,-;0 i

Remark 2. In the case r =1 the proposition gives the well-known equa-
tion M, e, =e,. This may be seen as follows. Using a linear transformation
formula for the hypergeometric function , F,(a, b; ¢; x) (see, e.g., [ 5, p. 89,
formula (20)]) we get by (8)

HOo,n, x)=n"",Fin+l,myn+L;x)=n"1—x)"",F, 0, L;n+1;x)
=n"Y(1=x)""
so that by (6)
(M, e {x)=1—(1—x)=x for each xe({0,1)

which, of course, is also valid for x=1.

Now we proceed to derive the desired expression for the moments
(M,e,}(x) by means of a Laplace integral. Replacing the variable ¢ by
log [x+ (1 —x)e'] in (7) gives for every ne N,

Ij,n x)=(1 —.\')"‘J‘ ‘logj [x+(1—x)e']e ™Md
0

Therefore, the proposition implies as our first main result a closed
expression for (M, e,)(x) in terms of a Laplace integral.

THEOREM 1. For reN and ne N the formula

r—1 )it
(M,e)x)=1+(1-x) .Z (j.il)(—%)-—@(x,n) (9)

is valid for every xe[0, 1], where

G,(x.5) = j: Fix.tjedi  (s>0,xe[0,1)) (10)
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is the Laplace transform of
Fi(x,)=log’ [x+(1—x)e'] (jeNy, xe[0,1],t=0) (11)

{as a function of t).

Remark 3. 1Tt could be of interest that Theorem 1 offers the possibility
to define a quite natural extension of the moments (M, e,)(x) to complex
numbers » with Re(n) > 0.

3. THE SPECIAL CASE r=2

In the special case r =2, Theorem 1 states
(M,e))(x) =1+ (1 =x)[ =2nGy(x, n) + n*G(x, n)].

Go(x, n)=n"" is obvious. Integration by parts and substitution in (10)
as well as some known properties of hypergeometric functions yield

Gx,n)=n"Y1—x)" ,F(n,n;n+1,x)
=n"}1—=x)F(l,1;n+1;x)
=n(1=-x)[1+x(n+ 1), F(1,2;n+2; x)].

Therefore we get

x(1—x)?

a1 Db Zat2Zix) o (xe[0.1)

(M, e;)(x)=x*+

which is the above-mentioned result (3).

4. THE AsYMPTOTIC EXPANSION FOR M e,

In order to derive an asymptotic expansion for M e, it is sufficient, by
(9), to study the behaviour of the Laplace integrals G,(x, s) for s — 4 c0.
Using Watson’s lemma (see, e.g., [5, p. 106f]) it is possible to give the
complete asymptotic expansion of G,(x, 5) as 5 — + oC.

LemMa 1. Let F(t) be defined and continuous on [0, oc). For some
constants a, 6 >0 let

(a) F(1) be analytic for |t| <a+3d with F(t)=3%_,a,t* and
(b) |F(t)| < Ke® for all real t>a.
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Then we have

o

jm Fitye *di~ Y aul(k+1)s 1 (s> +m),
O

k=0
The latter formula means that, provided s> b,
A r—1
f Fiyedi=Y al'(k+1)s™* "4o(s") (s> +00)
(4]

k=0

for all pe N. We remark that this 1s valid even if s 1s complex with
Re(s) > b as Re(s) — + oo.

Obviously, for every fixed xe [0, 1) and all je N, the functions F;(x, t)
in (11) satisfy the assumptions of Lemma 1, where / may be chosen to be
any arbitrary small positive constant. Therefore we have

Fix, )= i al/)(x) 1* (12)
k=0

in a neighbourhood of the origin 1 =0, and Lemma 1 implies
G,(x,5)~ Z al/Yx)Mk+1)ys*! (s— 400). (13)

The coefficients al’/J(x) occurring in (12), resp. (13), will be determined in
the following.

LEMMA 2. For k,j=0,1,2, .. there holds
\*)———ZSJ (1 —x) (14)

where the sum is to be read as 0 if k <j.

The quantities S} and ¢} denote the Stirling numbers of the first, resp.
second, kind defined by

J J
=% Six'  and x/=3 ox" (jeN,)
i=0 i=0
where X'V =x(x—1)---(x—j+ 1) is the falling factorial.
Proof of Lemma 2. By the well-known power series expansions

) !
log/(1+0)=/13 Si= (i <1,jeNy)

P
i=j
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and
k

= .
(er_l):z!kgiakﬁ (teR, ieNy)
(see, e.g., [4, p. 2027), we get using (11) that

Fi(x,t)=log/[ 1+ (1 —x)(e'—1)]
k

. i j i - it
=J! ZAS"“ -0 Lol
i=j =i

{JL(I —x)

*“}
HM»

for all ¢+ which are sufficiently small. This proves Lemma 2.

Combining (9), (10) with (13) and Lemma 2 we obtain our second main
result.

THEOREM 2. The complete asymptotic expansion for the moments M, e,
(reN) of the Meyer—Kénig and Zeller operators is

(M,e)(x)~x"+ Z i xyn* {(n— o) (15)

or every x [0, 1], where the coefficients are given by
) g )

r

ctrl(x) =Z<>(—1 H(j—Lk+j—1,x) (16)

and H(j, m, x) is defined as

H(j, m, x)=iS’a (1—x)*'  (0<j<m). (17)

1 nt

Remark 4. In order that Theorem 2 also contains the trivial case r=1
for which ¢f'?=0 (k=1,2,..), the sum in (16) starts at j=1. In the
general case r > 2 the sum in (16) actually runs from j=2 to j=r because
of H(0,k,x)=0(k=1,2, ..).

Proof of Theorem 2. Taking into account that by Lemma 2 for all
xeR

al®(x)y =3, and al/l(x)=0 (k=0,..,j—1;jeN)
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we obtain with regard to (13), (14), and (17)
Go(x, s)=5""

for j=0 and

G (x, )~ Y ald )k +j) s+
k=
) k+j o ,
S*k—jfl Z S{a'k-+-j(1 —X)'

0 i=j

H

s °

J!

k

4w
=L ¥ s HG k) x) (5o +o0),
1—x,"

for je N. Inserting this in Eq. (9) we get

(M, e )x)~1—r(1—x)+ }j: n* zr: <r>
k=0 j=2 N
x(—1)VYH(j-1,k+j—1,x) (n— o).

Taking advantage of the relationship H{j—1,j—1, x)=(1—x)’ for all
Jje N, we see that

(M,e,)(x)~x + ‘Z nt Y (;)

k=1 j=2
x(~1)YH(j—-1Lk+j—1,x) (n— o)
and, in view of Remark 4, the Proof of Theorem 2 is complete.

For practical use, however, Theorem 2 is not very suitable because the
Stirling numbers occurring in (17) are not easy to handle. Therefore we
close this note with the following

CORrROLLARY. For every reN and xe(0,1] we have the asymptotic
relation

r 2 =1
2>(l xX)"x

U ()

x (1 —x)(5x-—1)+3<;>(1 —.\-)2}

(M, e )(x)=x" +1<
n
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p¥ -0 { (’) x*(6x7 = 6x + 1)
PE 2

r , r .
—2<3>x(1—.\)(16x ~11x+1)+<4>(1—x)
x (617 —26x + 1) — 10<;>(1 —x) (5x—1)
+15 <g>(1 —x)“} +0(n™Y  (n-o0).

Proof. By (17) we get

H(j_l,j,x)zxu—x)f@, (18)
x(1=x)
HG=1,41,0 =" G i DL +2) x 4]
=x(1—x)f{<£>(2x—1)+<§>(5x—1)+3<£>x]
(19)

and

H(j—1,j+2,x)
x(1—x) | . o . . 2 ;
=T(1+2)U+1)J(J—1)[(}+1)(J+2)x —4(j+1)x+2]

=x(l—,\")"[<£>(6x2—6x+1)+2 <;>(16x2— Ix+1)

+<£> (61x —26x +1)+ 10 @) (Sx*—x)+15 <é) xz} (20)

The right-hand sides of (18), (19), and (20) are then substituted in formula
(16), taking therein £ =1, 2, 3. In view of the identity

i(;)(—l)f@(l—x)f=(—1)"<;>x~k<1—x>k k> 1),

J=1

the corollary now easily follows from Theorem 2.
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Finally, let us consider the special case r=2. In this case the corollary
gives :

I 2x—1 6x*—6x+ 1}
n* n

(Mnez)(x>=x2+xu_x)z{’_1+ 1,676

+0(n~ % (n— c0)
which contains formula (4).

Remark 5. One of the referees pointed out that the last given
asymptotic relation for (M, e,)(x) may also be derived from (3) by
expanding , F,(1,2; n+2; x).

ACKNOWLEDGMENTS

The author is indebted to the referees for a number of valuable comments. Their helpful
suggestions led to some improvements of the paper and, in particular, to a revised version of
the proof of the corollary.

REFERENCES

1. J. A. H. ALKEMADE, The second moment for the Meyer-Konig and Zeller operators,
J. Approx. Theory 40 (1984), 261-273.

2. T. BaBA AND Y. MATsSUOKA, Some results on the Meyer—Konig and Zeller operators,
Rep. Fuac. Sci. Kagoshima Univ. Math. Phys. Chem. 18 (1985), 1-18.

3. E. W. CHENEY AND A. SHARMA, Bernstein power series, Canad. J. Math. 16 (1964),
241-253.

4. C. JorDaN, “Calculus of Finite Differences,” Chelsea, New York, 1965.

5. A. KraTzER anND W. FRraNz, “Transzendente Funktionen,” Akademische Verlags-
gesellschaft, Leipzig, 1963.

6. A. Lupas AND M. W. MULLER, Approximation properties of the M, -operators, Aequationes
Math. § (1970), 19-37.

7. W. MEYER-KONIG AND K. ZELLER, Bernsteinsche Potenzreihen, Studia Math. 19 {1960),
89-94.

8. P. C. SikkeMa, On the asymptotic approximation with operators of Meyer-Kaénig and
Zeller, Indag. Math. 32 (1970), 428-440.



